دانشگاه آزاد اسلامی واحد سنندج
دانشگاه آزاد اسلامی واحد سنندج

دانشگاه آزاد اسلامی واحد سنندج

مقالات علمی پژوهشی

کوره آفتابی چگونه کار میکند؟

کوره آفتابی وسیله‌ای است برای تولید گرما بوسیله تجمع و تمرکز نور خورشید در یک نقطه خاص و استفاده از حرارت آن نقطه برای تولید آب گرم و بخار آب گرم. کوره آفتابی به شکل بشقاب کاو (مقعر) و آینه‌ای و صیقلی (که نورهای تابیده شده به طرف خود را بازتاب می‌کند) است. نورهای تابیده شده از بی نهایت دور موازی هستند، بنابراین همه آنها بعد از بازتابش نقطه خاصی به نام کانون می‌گذرند. برای ورود به بحث با چند اصطلاح آشنا می‌شویم.

  1. مرکز آینه (C): نقطه‌ای است که فاصله تمام نقاط سطح از آن نقطه ثابت است.
  2. کانون (F): نصف فاصله سطح تا مرکز را کانون می‌نامند و فاصله و سطح بشقاب (رأس آینه) تا کانون فاصله کانونی (f) نامیده می‌شود
  3. محور اصلی: خطی فرضی که وسط (رأس) بشقاب را به مرکز وصل کرده و کانون روی آن نیز کانون اصلی نامیده می‌شود.

برای مطالعه کامل بروی ادامه ی مطلب کلیک کنید.


کار اصلی در بازتاب تقارن آینه‌ای دارند. پرتو نورهایی که موازی محور اصلی بتابد حتما بازتاب آنها از کانون می‌گذرد (کانون اصلی) ، پس در آن نقطه حرارت و گرما بسیار بالاتر از اطراف است. پس اگر منبع آب در آن نقطه قرار داده شود آب در اثر انرژی دریافتی از خورشید بسیار گرم خواهد شد و این اساس یک کوره آفتابی است.

نمونه کوچک و قدیمی کوره آفتابی ذره‌بین است که از شیشه محدب یا حتی یخ تراشیده شفاف ساخته می‌شد. امروزه از اجسام آینه‌ای با توجه به ویژگی ساختمانی گفته شده برای تولید آب گرم منازل در ابعاد محدود در پشت بامها و در ابعاد بزرگتر ساختمان بلند که نمای بیرونی آن به شکل کاو طراحی شده و در نمای جلویی آن از شیشه‌های رفلکس و آینه‌ای برای بازتاب نور استفاده می‌شود، بطوری که بازتابها در یک نقطه در مقابل یعنی کانون جمع می‌شوند.

در کانون یک منبع آب قرار می‌دهند و با لوله کشیهایی به توربین تولید برق وصل می‌کنند، با توجه به ابعاد ساختمان انرژی گرمایی دریافتی فوق العاده بالاست و بخار آب تولید شده با جریان شدید در لوله‌ها به توربین رسیده و باعث چرخش آن و تولید برق ارزان قیمت در چنین مجموعه نیروگاهی برق - آبی می‌گردد. با توجه به پیشرفت صنعتی ، نیاز روز افزون به انرژی ، گرانی ، محدودیت منابع ، ناوگان حمل و نقل ، آلودگیهای زیست محیطی برخی منابع انرژی مثل سوختهای فسیلی ، پسماندها و ... . استفاده از انرژی خورشید به عنوان منبع سالم و تجدید پذیر انرژی در زمین راه کار مناسبی برای منازل در جهت کاهش هزینه و آلودگی و ... باشد، بویژه که برخی مناطق به دلیل صعب العبور بودن و هزینه انتقال و تلفات انرژی بالایی دارند.

برای افزایش بهره‌وری در استفاده از بشقابها و نیروگاهها می‌توان موارد زیر را در نظر گرفت. موقعیت جغرافیایی ، اقلیمی ، ویژگیهای آب و هوا با توجه به آفتابی بودن ، طول روز مسیر ظاهری حرکت خورشید در آسمان از طلوع تا غروب و با استفاده از منابع اطلاعاتی در این مورد می‌توان اطلاعات لازم را بدست آورد.
استفاده از مواد مناسب و طراحی آنها در جهت افزایش نسبت بازتاب به نور تابشی و همچنین برنامه رایانه‌ای و یک موتور برای چرخاندن دستگاه و مجموعه برای افزایش کارایی توصیه می‌شود، طوری که بشقاب و مجموعه همواره مسیر حرکت خورشید را تعقیب کرده و متناسب با آن بچرخد. در برنامه رایانه‌ای استفاده از روش و نمودار رویدات و سلرز - مدار میل خورشید بر حسب عرض جغرافیایی ، انرژی رسیده به سطح و توان جذب و بازتاب سطح در منبع فوق سودمند است.


انرژی خورشیدی

برای تبدیل حرارتی می‌توان یا از جمع کننده‌های تخت و یا از آینه‌های متمرکز کننده استفاده کرد. از نظر ترمودینامیکی از جمع کننده‌های تخت ، دمای نسبتا کمتری گرفته می‌شود در صورتی که با آینه‌های سهموی دمای بالاتر و حتی در بعضی شرایط دمای بیشتر از تحمل مواد مورد استفاده بدست می‌آید. روش تبدیل انرژی خورشیدی به انرژی الکتریکی یا تبدیل انرژی حرارتی به ترموالکتریکی توسط ماشین حرارتی خورشیدی که به مولد الکتریکی ترمو - یونی جفت شده ، انجام می‌پذیرید (هنوز در مرحله آزمایش است). با جریان هوای گرم که توسط انرژی خورشیدی تولید می‌شود، می‌توان یک دستگاه ماشین بادی را بکار انداخت، ولی هنوز مثال عملی در این مورد وجود ندارد.


مولدهای ترموالکتریکی خورشیدی

یک مدار بسته متشکل از دو فلز هادی مختلف که توسط جوش به هم متصل می‌شود، می‌تواند محل یک جریان پیوسته‌ای است، به شرط آنکه بین دو محل اتصال جوش ، اختلاف دما وجود داشته باشد. با استفاده از مواد نیم رسانا می‌توان بازده تبدیل قابل ملاحظه‌ای بدست آورد. یک مولد ترموالکتریکی از تعدادی کوپلها (جفتها) تشکیل شده که هر کدام از آنها از دو عنصر حرارتی تشکیل یافته است: یکی از نوع P و دیگری نوع N توسط پل فلزی که با منبع گرم در تماس است، به هم مربوطند. انتهای دیگر هر دو به یک مقاومت بسته شده و در دمای منبع سرد نگهداری می‌شوند.

منبع گرمای مورد استفاده می‌تواند یک شعله یا انرژی حرارتی یک سیال باشد که به انرژی خورشیدی نیز اندیشیده‌اند. در این مورد می‌توان از یک جمع کننده تخت را که شامل یک یا چند صفحه شیشه‌ای جهت جلوگیری از اتلافهای حرارتی تهیه می‌شود، و یا یک آینه متمرکز کننده را نیز مورد استفاده قرار داد. بهتر است دمای منبع سرد نزدیک به دمای محیط باشد، یا حداقل از آن خیلی دور نباشد؛ مثلا از جریان آب استفاده کرد و برای تأسیسات بزرگ آب گرم بدست آمده برای مصارف خانگی پیشنهاد شده است. توان ترموالکتریکی یک ترموکوپل با رابطه زیر معین می‌شود:

(e = E/(T2 - T1

که E نیروی الکتروموتوری ترموکوپل در مدار باز بر حسب ولت ، T1 و T2دماهای منبعهای سرد و گرم بر حسب درجه مطلق هستند. اگر n ترموکوپل با همان منبعهای گرم و سرد باشند، نیروی الکتروموتوری دستگاه مساوی با (ne(T2 - T1 است.


ترموکوپلهای تجارتی

ترموکوپلهای تجارتی معمولا توان ترموالکتریکی ضعیف و حدود 63 میکرو ولت بر درجه سانتیگراد هستند، به شرط آنکه اختلاف دما از 180 درجه سانتیگراد بیشتر نباشد. ترموکوپلی با یک آلیاژ مثبت متشکل از 35 درصد روی و 65 درصد آلومینیوم (شامل 2 درصد قلع ، 0.1 درصد نقره و 6 درصد بیسموت) و یک آلیاژ منفی 91 درصد بیسموت و 9 درصد آنتیموان توان ترموالکتریکی برای اختلاف دمای 80 درجه سانتیگراد به 280 میکرو ولت بر درجه سانتیگراد می‌رسد. متأسفانه به علت ذوب این آلیاژها در دمای 260 درجه سانتیگراد نمی‌توان آن را برای دماهای بالا بکار برد.


برای اصلاح بازده باید موادی با توان ترموالکتریکی بالا را بکار برد و لازم است موادی که مورد استفاده قرار می‌گیرند قابلیت هدایت گرمایی (K) ضعیف و مقاومت مخصوص (r) کمتری داشته باشند. تا به حال بازده 10 درصد با موادی که در اختیار دارند، برای دمای 500 درجه منبع گرم و 20 درجه منبع سرد بدست آمده است و با تکنیک خاصی بازده را به 12 درصد نیز بالا برده‌اند. اولین نمونه مولدهایی با جمع کننده تخت با یک یا دو صفحه شیشه‌ای و بدون متمرکز کردن تشعشع خورشیدی بوده است. بازده حاصل از این نوع تبدیل انرژی خورشیدی به انرژی الکتریکی حدود 0.5 درصد با جمع کننده‌های تخت بوده است. ترموکوپلهایی با نیمه هادیها تهیه شده و توان ترموالکتریکی آنها بیشتر بوده است.

تولید انرژی از خورشید

چگونه می‌توانیم از گرمای خورشید برای تولید انرژی استفاده کنیم. آیا از نور خورشید نیز می‌توان انرژی بدست آورد. برای اینکار از باتری خورشیدی استفاده می‌شود که نور خورشید را می‌گیرد و برق تولید می‌کند. باتریهای خورشیدی از ماده‌ای بنام سیلیسیوم ساخته می‌شود. هر باتری خورشیدی برق بسیار ناچیزی تولید می‌کند. برای همین معمولا باید از تعداد زیادی باتری کنار هم استفاده شود تا مقدار برقی که بدست می‌آید، مفید و مناسب باشد.

این باتریهای خورشیدی براحتی تعمیر می‌شوند و نگهداری آنها ساده است و محیط را نیز آلوده نمی‌کنند. با استفاده از باتریهای خورشیدی می‌توان دستگاههایی چون تلویزیون ، تلفن و پمپ آب را بکار انداخت. در جاهایی که روزهای طولانی و آفتاب درخشان دارند، حتی می‌توان تمام برق مورد نیاز را از باتریهای خورشیدی گرفت. باتریهای خورشیدی خیلی سبک هستند و به راحتی می‌توان آنها را به دهکده‌های دور افتاده برد. مردمی که همیشه در حرکت هستند نیز می‌توانند این باتریها را همراه داشته باشند و هر کجا که می‌روند از برق آنها استفاده کنند. مثلا گروههای پزشکی که برای درمان مردم به صحراها و جاهای دور افتاده می‌روند، باتریهای خورشیدی را برای روشن نگه داشتن یخچالهایشان بکار می‌گیرند تا داروها سالم و خنک بمانند.

با ساختن نیروگاههای خورشیدی بزرگ می‌توان مقدار زیادی برق تولید کرد. البته این نیروگاهها در جاهایی مفید هستند که روزهای طولانی و آفتابی دارند. نیروگاه خورشیدی محیط را آلوده نمی‌کند، چون انرژی لازم را از خورشید می‌گیرد و نیازی به سوزاندن سوختهای فسیلی ندارد. با استفاده از یک نیروگاه خورشیدی بزرگ ، برق مورد نیاز تمام خانه های یک شهر کوچک تولید می‌شود.


نیروی خورشیدی برای امروز و همیشه

در نیروگاه خورشیدی ، با استفاده از نیروی بخار ،‌ برق تولید می‌شود. تعداد زیادی آینه را بکار می‌گیرند تا نور خورشید را بر روی یک دیگ بخار بتابانند که در لوله‌های درون آن مایعی مثل روغن جریان دارد. روغن حرارت خورشید را می‌گیرد و آنقدر گرم می‌شود که می‌تواند آب دیگ را به بخار تبدیل کند. بخار توربین را به چرخش در می‌آورد. توربین هم ژنراتور را می‌چرخاند و برق تولید می‌شود.

 


سولاروان نام نیروگاه خورشیدی بزرگی است که در کالیفرنیای آمریکا ساخته شده است. این نیروگاه برج بسیار بلندی دارد. در بالای برج یک دیگ بخار قرار گرفته است. تعداد زیادی آینه اطراف برج روی زمین چیده شده‌اند و نور خورشید را بر دیگ می‌تابانند. به این ترتیب ، آب دیگ به بخار تبدیل می‌شود و بخار هم برای تولید برق مورد استفاده قرار می‌گیرد.


روی دیوار یک ساختمان بزرگ 10 طبقه تعداد زیادی آینه قرار داده‌اند که یک آینه بشقابی بزرگ بوجود آمده است. این آینه انرژی خورشید را از منطقه‌ای وسیع جمع آوری می‌کند و بر برجی می‌تاباند که کوره دورن آن قرار دارد. آینه‌هایی که روی تپه مقابل قرار گرفته‌اند، خورشید را دنبال می‌کنند و پرتوهایی آن را بر آینه بشقابی بزرگ می‌تابانند. جالب است بدانید که تعداد این آینه‌ها حدود 11000 عدد است. نیروی خورشید وقتی مفیدتر خواهد بود که بتوانیم آن را ذخیره کنیم. استخر خورشیدی می‌تواند گرمای خورشید را تا ساعتها پس از غروب آن ذخیره و نگهداری کند. این استخر سرپوشیده پوشش سیاه رنگی دارد که گرمای خورشید را می‌گیرد. آب استخر دارای نمک است که مقدار آن در عمق استخر بیشتر می‌شود.
لایه‌های بالایی آب نمک کمتری دارند از خروج گرمای لایه پایینی که گرم و داغ شده است جلوگیری می‌کنند. ساختن این استخرها و استفاده از آنها ساده است. راههای زیادی برای استفاده از انرژی و نیروی خورشید وجود دارد. نیروی خورشید پاکیزه است و می‌توانیم انرژی مورد نیازمان را از آن بگیریم. ذغال سنگ ، نفت و گاز هوا را آلوده می‌کنند و سرانجام یک روز تمام می‌شوند.اما خورشید به درخشش خود ادامه می‌دهد و نیروی آن همیشگی و ماندنی است.

 

باتری خورشیدی

وسیله یا دستگاهی است که نور خورشید را مستقیما به الکتریسیته یا برق تبدیل می کند. ماهواره‌هایی که به فضا فرستاده می‌شوند، انرژی مورد نیازشان را از تعداد زیادی از همین باتریها می‌گیرند. بعضی ماشین حساب‌ها با باتری خورشیدی هم کار می‌کنند. در نقاط دور افتاده که برق ندارند، با استفاده باتری خورشیدی می‌توان دستگاههایی مثل تلویزیون یا یخچال را بکار انداخت و امروزه دانشمندان ماشینها و حتی هواپیماهایی ساخته‌اند که نیروی خود را از باتری خورشیدی می‌گیرند.

 

توربین

دستگاهی که شبیه چرخ آب است و وقتی آب یا بخار با فشار به پره‌های آن برخورد می‌کند، به چرخش در می‌آید. این دستگاه انرژی جنبشی آب را می‌گیرد و به حرکت چرخشی تبدیل می‌کند.


ژنراتور

دستگاهی است که انرژی مکانیکی (حرکت چرخشی) را می‌گیرد و به انرژی الکتریکی یا برق تبدیل می‌کند. معمولا ‌این حرکت چرخشی از یک توربین به ژنراتور منتقل می‌شود.


سوخت فسیلی

فسیل کلمه‌ای خارجی (لاتین) و به معنی چیزی است که از زمین بیرون آورده می‌شود. غال سنگ ، نفت و گاز را سوخت فسیلی نامیده‌اند، چون از دل زمین بیرون آورده می‌شوند. سوختهای فسیلی در طول میلیونها سال بوجود آمده‌اند. جانوران و گیاهان ، پس از مرگ ، در زیر لایه‌های سنگ و خاک قرار گرفته‌اند و سالهای زیادی زیر فشار مانده‌اند تا به این سوختها تبدیل شده‌اند. بنابراین ، اگر سوختها به همین ترتیب مصرف شوند، سرانجام روزی تمام خواهند شد و در این مدت ، ذخیره جدیدی جای آن را پر نخواهد کرد.

کوره آفتابی با استفاده از انرژی خورشید گرم می شود (در کوره‌های دیگر ، نوعی سوخت را می‌سوزاند تا گرمایش به کوره منتقل شود.) معمولا با استفاده از تعداد زیادی آینه ، پرتوهای نور خورشید را جمع آوری و پرقدرت می‌کنند و مجموعه آنها را بر روی کوره می‌تابانند تا دمایش خیلی بالا رود. ذره بین وسیله‌ای است که همین کار را انجام می‌دهد. شاید دیده باشید که وقتی ذره بین را مقابل خورشید می‌گیریم و مجموعه پرتوهای آنرا به صورت یک نقطه مثلا روی پوست یا کاغذ می‌تابیم، آن قدر حرارت ایجاد می‌شود که پوست می‌سوزد و یا کاغذ آتش می‌گیرد.

 

نیروگاه خورشیدی

نیروگاه مخصوصی که برای تولید برق از انرژی گرمایی خورشید استفاده می کند. از این انرژی برای گرم کردن یک کوره آفتابی استفاده می‌شود که بخار لازم را تولید می‌کند. از این مرحله به بعد ، کار همانند نیروگاههای دیگر انجام می‌شود: بخار ، توربینها را می‌چرخاند و توربین هم ژنراتورها را بکار می‌اندازد تا برق تولید شود.




 این مقاله  برای وبلاگ نساین اس دی جی تهیه شده است و استفاده از آن فقط با ذکر نام نویسنده یا مترجم و نام  نساین اس دی جی همراه با لینک آن مجاز  است

معرفی رشته مهندسی مکانیک در مقطع کارشناسی ارشد


گرایش‌ها و ابعاد مختلف رشته مهندسی مکانیک در کارشناسی ارشد


مکانیک بهشت ریاضیات است. این جمله زیبا از “لئوناردو اولر” ریاضیدان بزرگ سوئیسی بنیان‌گذار ارتباط تنگاتنگ ریاضیات با مکانیک است و همچنین مکانیک بخشی از علم فیزیک است. به همین دلیل دانشجوی مهندسی مکانیک باید در دو درس ریاضی و فیزیک قوی بوده و همچنین از هوش استعداد و قدرت تجسم خوبی برخوردار باشد. یک مهندس مکانیک بنا به مقتضیات رشته خود می‌بایست در محیط‌های تولیدی و در کارخانه‌ها اکثراً مشغول له کار گردد و در نتیجه باید توانایی کار در محیط‌های شلوغ و پرسروصدا و خشن و دور از شهر را داشته باشد.


توضیحی پیرامون هر گرایش در ادامه مطلب . . .



گرایش‌ها و ابعاد مختلف رشته مهندسی مکانیک در کارشناسی ارشد


مهندسی مکانیک در مقطع کارشناسی ارشد دارای هفت گرایش اصلی است:

مهندسی مکانیک – طراحی کاربردی
مهندسی مکانیک – تبدیل انرژی
مهندسی مکانیک – ساخت تولید
مهندسی مکانیک – بیومکانیک
مهندسی مکانیک – سیستم محرکه خودرو
مهندسی مکانیک – سیستم‌های تعلیق ترمز و فرمان
مهندسی مکانیک – سازه بدنه خودرو

همچنین فارغ‌التحصیلان مهندسی مکانیک می‌توانند برای دوره کارشناسی ارشد خود ۳ گرایش فرعی مهندسی مکانیک را نیز انتخاب کنند:

- سیستمهای انرژی و محیط زیست

- انرژی هسته‌ای

- مهندسی دریا


توانایی‌های لازم برای داوطلبان این رشته

مکانیک بهشت ریاضیات است. این جمله زیبا از “لئوناردو اولر” ریاضیدان بزرگ سوئیسی بنیان‌گذار ارتباط تنگاتنگ ریاضیات با مکانیک است و همچنین مکانیک بخشی از علم فیزیک است. به همین دلیل دانشجوی مهندسی مکانیک باید در دو درس ریاضی و فیزیک قوی بوده و همچنین از هوش استعداد و قدرت تجسم خوبی برخوردار باشد. یک مهندس مکانیک بنا به مقتضیات رشته خود می‌بایست در محیط‌های تولیدی و در کارخانه‌ها اکثراً مشغول له کار گردد و در نتیجه باید توانایی کار در محیط‌های شلوغ و پرسروصدا و خشن و دور از شهر را داشته باشد.


توضیحی پیرامون هر گرایش

مهندسی مکانیک – طراحی کاربردی

هدف تربیت متخصصانی است که بتوانند در مراکز تولید و کارخانه‌ها اجزاء و مکانیزم‌های ماشین آلات مختلف را طراحی کنند. در این گرایش به بررسی انواع نیروها، حرکت‌ها و تأثیر آنها در اجزاء مختلف ماشین پرداخته شده و بهترین حالت قطعه مورد نظر برای تمامی آن نیروها و گشتاورها برای برداشتن بهترین کارایی در عمر مناسب طراحی می‌گردد.

مهندسی مکانیک – تبدیل انرژی

این رشته در به کار بردن علوم و تکنولوژی مربوط جهت طرح و محاسبه اجزاء سیستمهایی که اساس کار آنها مبتنی بر تبدیل انرژی انتقال حرارت و جرم است به متخصصان کارایی لازم را می‌دهد و آنها را جهت فعالیت در صنایع مختلف مکانیک در رشته حرارت و سیالات آماده می‌سازد.

مهندس مکانیک – ساخت و تولید

هدف ترتیب کارشناسانی است که با به کار بردن تکنولوژی مربوط به ابزارشناسی و ابزارسازی، ریخته‌گری، جوشکاری، فرم دادن فلزات و … کارگاه یا کارخانه‌های تولیدی آماده کار در زمینه ساخت و تولید ماشین‌آلات صنایع را طراحی کنند.

مهندسی مکانیک – بیومکانیک

بیومکانیک در واقع کاربرد علم مکانیک در بیولوژی (زیست‌شناسی) می‌باشدو در بیومکانیک هدف درک مکانیزم سیستمهای زنده است. در مورد یک اورگانیزم هم بیومکانیک کمک به درک عملکرد طبیعی آن تخمین تغییرات در اورگانیزم و پیشنهاد روشهای مصنوعی در مورد آن می‌نماید.

گرایش بیومکانیک توانایی طراحی و ساخت تجهیزات و مواد لوازم پزشکی ایمپلنت‌ها اورتزها و پروتزهای مناسب و سازگار با بدن موجود زنده‌ را به متخصصان می دهد.

مهندسی مکانیک – سیستم محرکه خودرو – سیستم‌های تعلیق ترمز و فرمان – سازه بدنه خودرو

هدف تربیت متخصصانی در زمینه‌‌های مختلف اجزاء خودرو برای طراحی خودروهایی با مصرف سوخت و آلودگی بهینه و راحتی و آسایش بیشتر سرنشین و عمر مناسب در کاربردهای مختلف خودروها می‌باشد.

سیستمهای انرژی و محیط زیست

هدف تربیت متخصصانی برای طراحی سیستمهای بهینه مصرف سوخت بر اساس معیارهای اقتصادی می‌باشد. متخصصان این رشته با واحدهای مربوط به اقتصادی که می‌گذرانند بحث‌های مکانیکی مورد نیازی که فرا می‌گیرند به طراحی سیستمهای انرژی بر اساس بهینه مصرف انرژی و بهینه آلودگی محیط زیست می‌پردازند.

مهندسی هسته‌ای

هدف تربیت متخصصانی برای طراحی و استفاده از انرژی هسته‌ای است و به ۳ گرایش پرتوپزشکی، طراحی راکتور و چرخ سوخت تقسیم می‌شود که در گرایش راکتور به تکنولوژی تولید سوخت هسته‌ای بر اساس طراحی راکتور مناسب و دینامیک راکتور صورت می‌گیرد. درگرایش چرخه سوخت به فرآیندهای سوخت هسته‌ای از استخراج از معدن تا لحظه‌ای که به سوخت تبدیل می‌شود پرداخته می‌شود و در گرایش پرتوپزشکی به استفاده از انرژی هسته‌ای در کاربردهای پزشکی از جمله MRI و CT scan و … پرداخته می‌شود:

مهندسی دریا

هدف تربیت متخصصانی است که به طور تخصصی در ارتباط با کشتی و سازه‌های دریایی مثل اسکله‌ها و سکوهای نقتی متحرک مطالعه می‌کنند و طراحی بدنه، استحکام بدنه، سیستم‌های موتور گیربکس، پایداری کشتی در مقابل امواج جانبی کشتی و طراحی مربوط به ناوبری (مسیریابی کشتی) می‌پردازند.


گرایش‌های این رشته در مقطع لیسانس

رشته مهندسی مکانیک دارای سه گرایش، طراحی جامدات، حرارت و سیالات و ساخت و تولید در مقطع لیسانس است که گرایش طراحی جامدات به بررسی انواع نیروها، حرکتها و تأثیر آنها در اجزاء مختلف ماشین می‌پردازد و مهندس طراح جامدات با توجه به نیازهای جامع، دستگاهها و ماشین‌ها مختلف را طراحی می‌کند. گرایش حرارت و سیالات به تحلیل و طراحی سیستم از دیدگاه حرارتی سیالاتی می‌پردازد و مهندس طراح سیالات به طراحی سیستمهای برودتی و حرارتی و تأسیساتی در ساختمان‌ها و اماکن می‌پردازد. گرایش ساخت تولید به مسائل مربوط به ساخت بهینه و تولید با کیفیت بالا می‌پردازد و بیشتر به حل موضوعات و مشکلات فرآیندها و دستگاههای ساخت و تولید می‌پردازد.


رشته مهندسی مکانیک

زمینه‌های اشتغال

دانش مکانیک دانش زندگی است. در هر مجتمع و کارگاه صنعتی نیاز به فارغ‌التحصیل این رشته امری ضروری و مشهود است و با توجه به حرکتهای صنعتی این چند ساله اخیر کشور، مهندسین مکانیک بیش از پیش در گرداندن چرخ صنعت دخیل شده‌اند و راه همواره برای رشد و ترقی آنها باز است.


بازار کار در خارج از کشور

چشم انداز شغلی مهندسان در خارج کشور نیز بسیار امیدبخش و با استحکام است. برای مثال در ایالات متحده آمریکا رشد شغل‌ها و حرفه‌های مربوط به مهندسی مکانیک هر سال حدود ۱۶% (۳۵ هزار شغل) است و انتظار می‌رود این آهنگ رشد تا چند سال آینده هم حفظ شود. مهندسان مکانیک از روزگاران گذشته تا به امروز اغلب در بخش‌های صنعتی نقش عمده‌ای ایفا کرده و می‌کنند.

همچنین صنعت پزشکی و داروسازی فرصت‌های شغلی جدید و هیجان‌انگیزی را برای مهندسان مکانیک به وجود آورده‌اند تا نیروها و دانش‌های زیستی را در هم بیامیزند.

در چه صنایعی می‌توانند مشغول به کار شوند

یک مهندس مکانیک در حال حاضر در زمینه‌های مختلفی می‌تواند فعالیت کند که از آن جمله می‌توان به موارد زیر اشاره کرد:

- طراحی و ساخت تمامی ماشین‌آلات و قطعات آنها، اعم از ماشین‌آلات تولیدی تمامی صنایع، لوازم خانگی و تجهیزات پزشکی.

- طراحی و ساخت تجهیزات و سیستمهای انتقال و تصفیه آب، سیستم‌های مکانیکی و کنترلی پالایشگاه‌ها و کارخانجات شیمیایی.

- طراحی و ساخت تأسیسات حرارتی و برودتی ساختمانها و اماکن، بالابرها و آسانسورها و سیستم‌های حمل و نقل.

- ساخت ماشین‌آلات تلغیظ و بازیافت مواد مثل کمارخانجات قند، کاغذسازی، سیمان، نساجی، نمک و کنستانتره.

- طراحی و ساخت وسایل و تجهیزات حمل و نقل زمینی، دریایی و هوایی.

- ساخت تجهیزات دفاعی مانند تانک، راکت، اژدر و پلهای متحرک.

- ساخت روبات‌ها، بازوهای مکانیکی و سیستم‌های تولید.

- در ضمن یک مهندس مکانیک می‌تواند به‌عنوان کارشناس و مشاور فنی در بانک‌ها، شرکت‌های سرمایه‌گذاری و بیمه و شرکت‌های بازرسی و نظارت امور بین‌المللی فعالیت بکند.



تسلیحات نظامی ایران، انواع موشک های ایران

کامل ترین مرجع برای تحقیقات موشکی

(در حال کامل شدن)

چند وقتی ایه که قصد دارم کاربرای عزیز نساین اس دی جی، رو با تسلیحات نظامی و توان کشورمون رو آشنا کنم اما بعلت گستردگی مطالب وقت نکردم، تا این دو روزه که تونستم اطلاعات کاملی راجع به قدرت موشکی کشور رو بدست بیارم. در این پست انواع موشک های ساخت ایران به تفکیک کاربرد بهمراه عکس و فیلم رو برای شما عزیزان آماده کردم.

در آینده تسلیحات دیگه هم مورد بررسی قرار میدیم. امید است مورد رضایت شما قرار گیرد.

دیاگرام موشک شهاب 3


اطلاعات کامل + جدول در ادامه مطلب . . .


<"div style="line-heigh:1.2em>

در حال کامل شدن


 موشک‌های بالستیک کوتاه برد
  •  شهاب 1
  •  شهاب 2
  •  فاتح 110
 موشک‌های بالستیک میان برد
  • شهاب 3
  • فجر 3
  • عاشورا
  • قدر 110
  • سجیل 1
  • سجیل 2
 موشک‌های بالستیک دور برد
  • شهاب 4
  • شهاب 5
  • شهاب 6
  •   ماهواره بر سفیر
  • پروژه کوثر
 موشک بالستیک ضد کشتی
  • خلیج فارس
 موشک هوا به زمین
  • شفق
  • شاهین 3
  • ستار
  • عصر 67
 موشک هوا به هوا
  • فاطر
  • سجیل
 موشک زمین به هوا
  • محراب
  • شاهین
  • میثاق 1
  • میثاق 2
  • صیاد 1
  • شهاب ثاقب
  • مرصاد
 موشک ضد تانک هدایت شونده
  • صاعقه
  • رعد
  • توفان
  • توفان 2
  • توفان 5
  • توسن
  • دهلاویه
 موشک ضد کشتی
  • نور
  • کوثر
  • قادر
  • ظفر
 اژدر (زیر دریایی)
  • حوت
 موشک کروز
  • نصر 1
  • مشکات (در حال توسعه)
 موشک ضد هلی کوپتر
  • قائم
 کاتیوشا
  • آرش
  • فجر 3
  • فجر 5
  • فل ذزق ?
  • فلق ?
  • عقاب
  • حاسب
 موشک توپخانه ای
  • صمید
  • تندر-??
  • زلزال 1
  • زلزال 2
  • زلزال 3
 موشک بدون بال
  • قیام 1





بمب هسته ای چگونه کار می‌کند؟

شما احتمالاً در کتابهای تاریخ خوانده‌اید که بمب هسته‌ای در جنگ جهانی دوم توسط آمریکا علیه ژاپن بکار رفت و ممکن است فیلم‌هایی را دیده باشید که در آنها بمب‌های هسته‌ای منفجر می‌شوند. درحالیکه در اخبار می‌شنوید، برخی کشورها راجع به خلع سلاح اتمی با یکدیگر گفتگو می‌کنند، کشورهایی مثل هند و پاکستان سلاح‌های اتمی خود را توسعه می‌دهند.

 ما دیده‌ایم که این وسایل چه نیروی مخرب خارق‌العاده‌ای دارند، ولی آنها واقعاً چگونه کار می‌کنند؟ در این پست خواهید آموخت که بمب هسته‌ای چگونه تولید می‌شود و پس از یک انفجار هسته‌ای چه اتفاقی می‌افتد؟



فیزیک هسته‌ای 

انرژی هسته‌ای به 2 روش تولید می‌شود: 

1- شکافت هسته‌ای: در این روش هسته یک اتم توسط یک نوترون به دو بخش کوچکتر تقسیم می‌شود. در این روش غالباً از عنصر اورانیوم استفاده می‌شود.




2- گداخت هسته‌ای: در این روش که در سطح خورشید هم اجرا می‌شود، معمولاً هیدروژن‌ها با برخورد به یکدیگر تبدیل به هلیوم می‌شوند و در این تبدیل، انرژی بسیار زیادی بصورت نور و گرما تولید می‌شود.





در شکل بالا نمونه ای از شکافت هسته اتم اورانیوم نمایش داده شده است.

و در شکل دیگر گداخت هسته‌ای اتم‌های هیدروژن و تبدیل آنها به هلیوم 3 و الکترون آزاد نمایش داده شده است.

طراحی بمب‌های هسته‌ای: 

برای تولید بمب هسته‌ای، به یک سوخت شکافت‌پذیر یا گداخت‌پذیر، یک وسیله راه‌انداز و روشی که اجازه دهد تا قبل از اینکه بمب خاموش شود، کل سوخت شکافته یا گداخته شود نیاز است. 

بمب‌های اولیه با روش شکافت هسته‌ای و بمب‌های قویتر بعدی با روش گداخت هسته‌ای تولید شدند. ما در این بخش دو نمونه از بمب های ساخته شده را بررسی می کنیم: 

بمب‌ شکافت هسته‌ای : 

1- بمب‌ هسته‌ای (پسر کوچک) که روی شهر هیروشیما و در سال 1945 منفجر شد. 

2- بمب هسته‌ای (مرد چاق) که روی شهر ناکازاکی و در سال 1945 منفجر شد. 

بمب گداخت هسته‌ای : 1- بمب گداخت هسته‌ای که در ایسلند بصورت آزمایشی در سال 1952 منفجر شد. 

بمب‌های شکافت هسته‌ای:





بمب‌های شکافت هسته‌ای از یک عنصر شبیه اورانیوم 235 برای انفجار هسته‌ای استفاده می‌کنند. این عنصر از معدود عناصری است که جهت ایجاد انرژی بمب هسته‌ای استفاده می‌شود. این عنصر خاصیت جالبی دارد: هرگاه یک نوترون آزاد با هسته این عنصر برخورد کند ، هسته به سرعت نوترون را جذب می‌کند و اتم به سرعت متلاشی می‌شود. نوترون‌های آزاد شده از متلاشی شدن اتم ، هسته‌های دیگر را متلاشی می‌کنند. 

زمان برخورد و متلاشی شدن این هسته‌ها بسیار کوتاه است (کمتر از میلیاردم ثانیه ! ) هنگامی که یک هسته متلاشی می‌شود، مقدار زیادی گرما و تشعشع گاما آزاد می‌کند. 

مقدار انرژی موجود در یک پوند اورانیوم معادل یک میلیون گالن بنزین است! 

در طراحی بمب‌های شکافت هسته‌ای، اغلب از دو شیوه استفاده می‌شود: 

روش رها کردن گلوله: 

در این روش یک گلوله حاوی اورانیوم 235 بالای یک گوی حاوی اورانیوم (حول دستگاه مولد نوترون) قرار دارد. 

هنگامی که این بمب به زمین اصابت می‌کند، رویدادهای زیر اتفاق می‌افتد: 

1- مواد منفجره پشت گلوله منفجر می‌شوند و گلوله به پائین می‌افتد. 

2- گلوله به کره برخورد می‌کند و واکنش شکافت هسته‌ای رخ می‌دهد. 

3- بمب منفجر می‌شود. 

در بمب هیروشیما از این روش استفاده شده بود. نحوه انفجار این بمب در شکل زیر نمایش داده شده است: 

روش انفجار از داخل:




در این روش که انفجار در داخل گوی صورت می‌گیرد، پلونیم 239 قابل انفجار توسط یک گوی حاوی اورانیوم 238 احاطه شده است. 

هنگامی که مواد منفجره داخلی آتش گرفت رویدادهای زیر اتفاق می‌افتد: 

1- مواد منفجره روشن می‌شوند و یک موج ضربه‌ای ایجاد می‌کنند. 

2- موج ضربه‌ای، پلوتونیم را به داخل کره می‌فرستد. 

3- هسته مرکزی منفجر می‌شود و واکنش شکافت هسته‌ای رخ می‌دهد. 

4- بمب منفجر می‌شود. 

بمبی که در ناکازاکی منفجر شد، از این شیوه استفاده کرده بود. نحوه انفجار این بمب، در شکل بالا نمایش داده شده است. 

بمب‌ گداخت هسته‌ای: بمب‌های شکافت هسته‌ای، چندان قوی نبودند! 

بمب‌های گداخت هسته‌ای ، بمب های حرارتی هم نامیده می‌شوند و در ضمن بازدهی و قدرت تخریب بیشتری هم دارند. دوتریوم و تریتیوم که سوخت این نوع بمب به شمار می‌روند، هردو به شکل گاز هستند و بنابراین امکان ذخیره‌سازی آنها مشکل است. این عناصر باید در دمای بالا، تحت فشار زیاد قرار گیرند تا عمل همجوشی هسته‌ای در آنها صورت بگیرد. در این شیوه ایجاد یک انفجار شکافت هسته‌ای در داخل، حرارت و فشار زیادی تولید می‌کند و انفجار گداخت هسته‌ای شکل می‌گیرد.در طراحی بمبی که در ایسلند بصورت آزمایشی منفجر شد، از این شیوه استفاده شده بود. در شکل زیر نحوه انفجار نمایش داده شده است.



اثر بمب‌های هسته‌ای: 

انفجار یک بمب هسته‌ای روی یک شهر پرجمعیت خسارات وسیعی به بار می آورد . درجه خسارت به فاصله از مرکز انفجار بمب که کانون انفجار نامیده می‌شود بستگی دارد. 

زیانهای ناشی از انفجار بمب هسته‌ای عبارتند از : 

- موج شدید گرما که همه چیز را می‌سوزاند. 

- فشار موج ضربه‌ای که ساختمان‌ها و تاسیسات را کاملاً تخریب می‌کند. 

- تشعشعات رادیواکتیویته که باعث سرطان می‌شود. 

- بارش رادیواکتیو (ابری از ذرات رادیواکتیو که بصورت غبار و توده سنگ‌های متراکم به زمین برمی‌گردد) 

درکانون زلزله، همه‌چیز تحت دمای 300 میلیون درجه سانتی‌گراد تبخیر می‌شود! در خارج از کانون زلزله، اغلب تلفات به خاطر سوزش ایجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسیسات خراب می‌شوند. در بلندمدت، ابرهای رادیواکتیو توسط باد در مناطق دور ریزش می‌کند و باعث آلوده شدن موجودات، آب و محیط زندگی می‌‌شود. 

دانشمندان با بررسی اثرات مواد رادیواکتیو روی بازماندگان بمباران ناکازاکی و هیروشیما دریافتند که این مواد باعث: ایجاد تهوع، آب‌مروارید چشم، ریزش مو و کم‌شدن تولید خون در بدن می‌شود. در موارد حادتر، مواد رادیواکتیو باعث ایجاد سرطان و نازایی هم می‌شوند. سلاح‌های اتمی دارای نیروی مخرب باورنکردنی هستند، به همین دلیل دولتها سعی دارند تا بر دستیابی صحیح به این تکنولوژی نظارت داشته باشند تا دیگر اتفاقی بدتر از انفجارهای ناکازاکی و هیروشیما رخ ندهد.



دانلود فیلم انفجار بمب هسته ای تزار (روسیه)
          




منبع :www.best of persia.com & mollasadra

چگونگی شکست دیوار صوتی + فیلم

در اعصار آغازین دوران هوانوردی ابتدایی، هواپیما ها بیشتر با سرعت های بسیار پایین نسبت به هواپیما های امروزی پرواز می کردند که حتی به بیشتر از ۳۰۰ کیلومتر در ساعت نمی رسید؛ در حالی که چنین سرعتی، سرعت مطلوب برای تیک آف یا برخاست یک هواپیمای جنگنده امروزی است و رسیدن به چنین سرعتی، ابداً مستلزم تلاش بسیار و فشار آوردن بیش از حد به موتور نمی باشد.


شکست دیواره صوتی
اما رفته رفته، سرعت هواپیما ها حتی با موتورهای پیستونی به گاه بالای ۶۵۰ کیلومتر بر ساعت رسیده و از آن زمان بود که دانشمندان علوم آیرودینامیک دریافتند که با افزایش سرعت، به تدریج میزان پسا افزایش پیدا کرده و در سرعت معینی، دیگر هواپیما قادر به سرعت گرفتن نبوده، گاه نیز استال می شوند.

در ادامه همراه ما باشید

در اعصار آغازین دوران هوانوردی ابتدایی، هواپیما ها بیشتر با سرعت های بسیار پایین نسبت به هواپیما های امروزی پرواز می کردند که حتی به بیشتر از ۳۰۰ کیلومتر در ساعت نمی رسید؛ در حالی که چنین سرعتی، سرعت مطلوب برای تیک آف یا برخاست یک هواپیمای جنگنده امروزی است و رسیدن به چنین سرعتی، ابداً مستلزم تلاش بسیار و فشار آوردن بیش از حد به موتور نمی باشد.

اما رفته رفته، سرعت هواپیما ها حتی با موتورهای پیستونی به گاه بالای ۶۵۰ کیلومتر بر ساعت رسیده و از آن زمان بود که دانشمندان علوم آیرودینامیک دریافتند که با افزایش سرعت، به تدریج میزان پسا افزایش پیدا کرده و در سرعت معینی، دیگر هواپیما قادر به سرعت گرفتن نبوده، گاه نیز استال می شوند.

در آن زمان، علت این موضوع بدین گونه بیان شد که با افزایش سرعت، به تدریج سرعت گردش انتها یا نوک پره های پروانه ی موتور، به سرعت صوت نزدیک شده و سرانجام در حداکثر سرعت یک هواپیمای پیستونی که حدود ۹۵۰ کیلومتر می باشد، سرعت انتهای پره ها از سرعت صوت گذشته و پسا یا درگ بسیاری ایجاد می شود که خود مانع سرعت گرفتن بیشتر هواپیماست.

در چنین سرعت هایی، پروانه موتور هواپیماهای پیستونی، نه تنها تراست یا نیروی کشش تولید نمی کند، بلکه در اثر سرعت بسیار زیاد، تبدیل به یک دیسک یا دایره توپر چرخنده می شود که جز ایجاد درگ و پسا، کار دیگری انجام نمی دهد.

آیرودینامیست های آن زمان این حد را یک محدوده سرعت یا همان دیوار صوتی در نظر گرفته و بسیاری از آنان نیز بر این عقیده بودند که گذشتن از دیوار صوتی و پشت سر گذاشتن آن، کاریست غیر ممکن؛ اما با ورود به عصر جت و پیشرفت علم آیرودینامیک، همه ما شاهد هستیم که این کار برای جنگنده های امروزی کاری بس سهل و آسان است.

حال، پس بررسی تاریخچه آن، بهتر است به اصل موضوع بپردازیم و نخست، ببینیم که خصوصیات صوت و دیوار صوتی چیست و چرا گذر از آن نیازمند قدرت و کشش و توانایی زیادی است.

صوت، در شرایط عادی (دما، فشار و … معمولی) در سطح دریا دارای سرعتی معادل ۳۳۲ متر بر ثانیه یا ۱,۱۹۵ کیلومتر بر ساعت می باشد که این سرعت، با افزایش ارتفاع و کاهش فشار و تراکم هوا، کاهش یافته و در ارتفاعات بالاتر، صوت فواصل را با سرعت کمتری می پیماید.

این مسئله بدین صورت است که صوت همانطور که می دانیم، از طریق ضربات ملکول های هوا به یکدیگر و انتقال انرژی آن ها فضا را طی می کند و هرچه تعداد مولکول ها در یک حجم معین بیشتر باشند، انتقال انرژی زودتر صورت پذیرفته و صوت با سرعت بیشتری انتقال می یابد؛ چنانکه سرعت صوت در مایعات بیشتر از هوا و در جامدات بسیار بیشتر از مایعات و هوا و معادل ۶۰۰۰ کیلومتر بر ساعت است. پس در نتیجه افزایش ارتفاع، تعداد ملکول ها در یک حجم معین کاهش یافته و صوت با سرعت کمتری فضا را می پیماید.

دیوار صوتی، شیئی فیزیکی و قابل روئیت نیست؛ بلکه، به دلیل اینکه گذشتن از سرعت صوت نیازمند توان بسیار بالای موتور و آیرودینامیک بسیار خوب می باشد، این حد را یک مانع برای رسیدن به سرعت های بالاتر دانسته و از آن به نام دیوار صوتی یاد می کنند.

عدد ماخ، در حقیقت همان نسبت سرعت شی پرنده یا همان هواپیما به سرعت صوت محیط است که به احترام دانشمندی آلمانی که برای اولین بار چنین مقیاسی را در نظر گرفت، آن را «ماخ» نام نهادند. پس عدد ماخ، کمیتی متغیر است و بسته به خصوصیات هوا مانند دما و فشار، تغییر کرده و کاهش یا افزایش می یابد.

اما حال که با عدد ماخ آشنا شدیم، به مهمترین و اصلی ترین عامل ایجاد دیوار صوتی یعنی همان «امواج ضربه ای یا Shockwaves» پرداخته و دلیل ایجاد درگ و پسای زیاد را در سرعت های نزدیک سرعت صوت، بررسی خواهیم کرد.

امواج ضربه ای یا شاک ویو ها، در حقیقت همان عامل اصلی ایجاد دیوار صوتی هستند. امواج ضربه ای، تغییری ناگهانی در فشار و دمای یک لایه از هواست که می تواند به لایه های دیگر منتقل شده و به صورت یک موج فضا را بپیماید.

برای درک بهتر مطلب، وقتی که سنگی در آب انداخته می شود، موج های در آب به وجود می آیند که به سمت خارج در حال حرکتند. این امواج، نتیجه افزایش سرعت یا اعمال نیرو به لایه ای از ملکول های آب است که قادر به انتقال به لایه های دیگر نیز می باشد، و امواج ضربه ای نیز، همان امواج درون آب هستند، با این تفاوت که آن ها در سیالی دیگر به جای آب به نام هوا، تشکیل می شوند.

در سرعت های نزدیک سرعت صوت، فرضیه غیر قابل تراکم بودن هوا رد شده و ضریب تراکم هوا به ۱۶% در می رسد، که مقداری غیر قابل چشم پوشی است. در این سرعت ها هوای جلوی بال یا لبه حمله به شدت متراکم گشته و دما و فشار آن به طرز قابل توجهی افزایش می یابد، همین مسئله، یکی از عوامل ایجاد امواج ضربه ای است. هواپیما با حرکت خود در هوا، نظم فشار هوای محیط را بر هم می زند و همانند قایقی که در آب در حال حرکت است، امواجی از آن ساطع شده و به دلیل اینکه این امواج با سرعت صوت حرکت می کنند و هواپیما زیر سرعت صوت در حال سیر است، از آن دور می شوند. اما کم کم، با نزدیک شدن به سرعت های ترانسونیک و حدود سرعت صوت، این امواج فرصت دور شدن از هواپیما را نداشته و در جلوی بال متراکم می شوند. در مناطقی از بدنه هواپیما که سطوح ناموزونی نسبت به جهت حرکت هواپیما دارد، سرعت گذر هوا افزایش یافته و بر اساس اصل برنولی، با افزایش سرعت سیال، فشار آن کاهش می یابد.

در چنین سرعت هایی، هوای اطراف این سطوح به سرعت صوت می رسد، گرچه هواپیما هنوز به سرعت صوت نرسیده باشد. در نتیجه رسیدن بعضی سطوح به سرعت صوت، امواج ضربه ای تولید شده و درگ یا پسای فراوانی را قبل از رسیدن به سرعت صوت تولید می کنند، که همین مسئله گذر از دیوار صوتی را مشکل می نماید.

به سرعتی که در آن حداقل یکی از سطوح هواپیما به سرعت صوت رسیده باشد،( گرچه این پدیده در مورد خود هواپیما صادق نباشد)، عدد ماخ بحرانی یا Critical Mach Number می گویند.

عدد ماخ بحرانی را می توان به سرعتی که نمودار پسا در مقابل سرعت سیر صعودی می گیرد، نیز تعریف نمود. در این سرعت، فرامین هواپیما کم کم شروع به درست جواب ندادن کرده و حالتی شبیه به کوبیدن بر روی بال توسط امواج ضربه ای به وجود می آید که با گذر از دیوار صوتی، فرامین هواپیما به حالت طبیعی خود باز می گردند.

بنابراین، در سرعتی که هواپیما به عدد ماخ بحرانی خویش می رسد، پسا به دلیل ایجاد امواج ضربه ای به طور قابل توجهی افزایش می یابد، پس، باید تلاش بر آن باشد تا عدد ماخ بحرانی هر چه بیشتر با بهبود ویژگی های آیرودینامیکی افزایش یابد، چون اگر این اتفاق در سرعت های پایین تر رخ دهد، هواپیما نیز باید از سرعت پایین تری جدال با افزایش پسا را شروع کند.

حال ببینیم که چرا با تولید امواج ضربه ای، پسا افزایش می یابد.

قانونی در مبحث دیوار صوتی بیان می کند که هر جریان هوایی که از یک موج ضربه ای بگذرد، موج ضربه ای انرژی کنتیکی یا جنشی سرعتی آن را گرفته و در خور تبدیل به گرما و افزایش فشار می کند، در نیتجه سرعت جریان هوای گذرنده از موج ضربه ای به میزان قابل توجهی کاهش می یابد. با کاهش سرعت جریان هوا در جلوی بال ها در سرعت های نزدیک سرعت صوت، تلاش پیشرانه یا موتورهای هواپیما باید چند برابر شود تا اثر کاهش سرعت در اثر موج ضربه ای را خنثی نماید. در صورتی که عدد ماخ بحرانی هواپیمایی پایین باشد، در سرعت های پایین باید نیروی رانشی هواپیما چند برابر شود که مصرف سوخت فوق العاده ای را برای گذر از دیوار صوتی به دنبال خواهد داشت؛ اما، در صورت بالا بودن عدد ماخ بحرانی، هواپیما فقط مدت کوتاهی نیازمند قدرت و کشش بسیار زیاد برای شکستن دیوار صوتی می باشد.

با اعمال نیروی فراوان رانشی، سرانجام هواپیما بر مشکل پسای زیاد فائق آمده و از دیوار صوتی می گذرد. در نتیجه این عمل، امواج تولید شده توسط هواپیما از آن جا مانده و پشت سر هواپیما حرکت می کنند. در این حالت، وضعیت به حالت عادی بازگشته و پسای ایجاد شده به وضعیت نرمال باز می گردد. بعضی از هواپیما ها از تمام نیروی پس سوزشان یا ۱۰۰% قدرت موتور برای گذر از دیوار صوتی و یا سرعت ۱,۱۹۵ کیلومتر بر ساعت استفاده می کنند، در حالی که در سرعت های بسیار بالاتر، تنها از ۳۰% قدرت موتور برای رانش به جلو بهره می جویند. با دقت در این مثال، می توان به خوبی افزایش درگ و پسا و قدرت فروان لازم برای غلبه بر آن در سرعت های نزدیک به سرعت صوت را درک و تجزیه و تحلیل نمود.

امواج ضربه ای توسط هواپیما در سرعت صوت، بسیار قدرتمند می باشند، چنانکه در صورت پرواز هواپیما نزدیک به زمین و گذر آن از دیوار صوتی، امواج ضربه ای با منتهای قدرت به اجسام زمینی مانند شیشه های منازل و ساختمانها برخورد نموده و باعث شکستن آن ها می شود، یا حتی اگر شخصی در معرض امواج ضربه ای به طور مستقیم قرار گیرد، احتمال از دست دادن شنوایی و پاره شدن پرده گوش بسیار است. از امواج ضربه ای، در بمب ها و تسلیحات دیگر نیز استفاده می شود.

بمب ها با یک افزایش دما و فشار ناگهانی در لایه هایی از هوا، امواج ضربه ای به وجود آورده که از طریق هوا انتقال یافته و باعث شکستن شیشه ها و تخریب دیوار ها نیز می شود. اگر شخصی در فاصله ای نسبتاً نزدیک در فضایی تهی از هوا و خلاء، حتی نزدیک یک بمب ده تنی ایستاده باشد، بر فرض منفجر کردن بمب، آسیبی به وی نخواهد رسید، چون هوایی برای انتقال امواج ضربه ای وجود ندارد.

به دلیل تولید امواج ضربه ای در سرعت های حدود سرعت صوت، خلبانان سعی می کنند فقط مدت کوتاهی در چنین سرعت هایی ترانسونیک پرواز کرده و به زودی از دیوار صوتی گذر کنند، چون پرواز در این سرعت ها نیروی بسیار زیاد موتور در نیتجه افزایش فوق العاده میزان مصرف سوخت را در پی دارد.

اما حال ببینیم صدایی انفجار مانند که در هنگام شکستن دیوار صوتی تولید می شود نتیجه چیست. امواج حاصله از حرکت هواپیما یا صدای تولید شده در اثر حرکت، هر بار در سرعت های زیر سرعت صوت از هواپیما دور شده و به گوش شنونده می رسد. اما با رسیدن هواپیما به سرعت صوت، این صداها دیگر فرصت دور شدن از هواپیما را نداشته و کلاً در جلوی هواپیما جمع می شوند. (مانند شکل)





با گذر از سرعت صوت، صدایی چند ده برابر شده از حرکت هواپیما با هم به گوش شنونده می رسد که مانند یک انفجار شدید یا صدای رعد و برقی بسیار قدرتمند می باشد. شاید در تصاویر هواپیماهای در حال گذر از دیوار صوتی، هاله ای سفید رنگ را در اطراف هواپیما مشاهده کرده باشید. در هنگام گذر از دیوار صوتی، اگر هواپیما نزدیک به زمین و در محیطی مرطوب با درصد بخار آب زیاد باشد، بخار آب هوا در اثر امواج ضربه ای فشرده شده و ابر سفیدی را برای چند ثانیه پدید می آورند که همان هاله سفید رنگ قابل روئیت در تصاویر است. اما از امواج ضربه ای در موتورهای جت نیز استفاده می شود. بدین گونه که، هوا ورودی در موتورهای جت، حتی اگر هواپیما با سرعت های بالای صوت پروزا نماید، باید زیر سرعت صوت باشد تا قابلیت احتراق را در موتور داشته باشد.

بنابراین، اکثراً در ورودی موتورهای هواپیماهای جنگنده مخروطی را به شکل کامل یا نصف مانند هواپیماهای میگ ۲۱ یا اف ۱۰۴ ستارفایتر می بینیم، که فلسفه ایجاد این مخروط تولید عمدی امواج ضربه ای است.

در صورت تولید امواج ضربه ای، هوای عبوری از میان آن با سرعت کاهش یافته یا زیر صوت وارد موتور می شود و فرآیند احتراق به طور کامل انجام می پذیرد. برای انجام پرواز های مافوق صوت، اغلب هواپیماهای جنگنده از مقطع بال های ویژه ای که عدد ماخ بحرانی را به حداکثر می رسانند، استفاده می نمایند و مقطع بال ها معمولاً بسیار نازک و متقارن می باشد. به عقب برگشتگی بال های هواپیماهای مدرن نیز در نتیجه تلاش برای افزایش عدد ماخ بحرانی بوده چرا که آزمایش های تونل باد نشان داده که با به عقب برگشتگی بال ها به میزان چند درجه عدد ماخ بحرانی به میزان قابل توجهی افزایش می یابد، تا جایی که هواپیماهای مسافربری سریع السیر مانند بوئینگ ۷۴۷ که در حدود سرعت صوت یا حدود ۹۸۰ کیلومتر بر ساعت پرواز می کنند، نیز به بال هایی به عقب برگشته مجهزند. در برخی از هواپیماها، مانند هواپیمای اف ۱۴ تامکت، از سیستم بال های متغیر استفاده شده که در این سیستم، در سرعت های پایین که از عدد ماخ بحرانی خبری نیست بال ها گسترده می شوند و برای فراوانی تولید می کنند، ولی رفته رفته با نزدیک شدن به سرعت صوت، کامپیوتر موجود در این سیستم خود زاویه لازم برای افزایش عدد ماخ بحرانی را محاسبه کرده و بال را متناسب با زوایه آن تغییر داده و به عقب بر می گرداند. این سیستم به دلیل هزینه های بالا و سنگینی بیش از حد آن، دارای استفاده محدودی می باشد. هواپیماها کلاً از نظر سرعت نسبت به سرعت صوت به چند دسته زیر تقسیم می شوند:

▪ هواپیماهای زیر سرعت صوت یا مادون صوت با محدوده سرعت ۳۵۰ تا ۹۵۰ کیلومتر بر ساعت، Subsonic

▪ هواپیماهای حدود سرعت صوت با محدوده سرعت ۹۵۰ تا ۱۲۰۰ کیلومتر بر ساعت، Transonic

▪ هواپیماهای سرعت صوت با محدوده سرعت دقیقاً سرعت صوت نسبت به محیط، Sonic

▪ هواپیماهای بالای سرعت صوت یا مافوق سرعت صوت با محدوده سرعت ۱ ماخ تا ۵ ماخ، Supersonic

▪ هواپیماهای با سرعت بسیار بیشتر از سرعت صوت با محدوده سرعت ۵ ماخ و بالاتر، Hypersonic

لازم به ذکر است، اولین بار، خلبانی آزمایشی آمریکایی به نام چاک ییگر، با انجام اصلاحاتی بر روی یک بمب افکن قدیمی آن را به چهار موتور موشکی مجهز کرده و بر فراز بیایانی در آمریکا، پس از جدا شدن از هواپیمای مادر، به پرواز در آورد. پس چند ثانیه پرواز هواپیمای پرتقالی رنگ ملقب به X-۱ به صورت گلاید، خلبان چهار موتور موشکی خود را روشن کرده و پس از چند لحظه صدایی رعد آسا در آسمان شنیده شد که همان نتیجه شکستن دیوار صوتی برای اولین بار در جهان بود. در این آزمایش، این هواپیما به سرعت ۱۶/۱ ماخ دست یافت، و با ورود به عصر جت، رویای شکستن دیوار صوتی و پا گذاشتن به سرعت صوت نیز به واقعیتی بسیار قابل لمس مبدل گشت.